Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
3.
Int J Equity Health ; 20(1): 248, 2021 11 24.
Article in English | MEDLINE | ID: covidwho-1533259

ABSTRACT

BACKGROUND: Preliminary evidence from the COVID-19 pandemic shows the presence of health disparities, especially in terms of morbidity and mortality. This study aimed to systematically review the evidence on the association of racial/ethnic and socioeconomic status (SES) with health outcomes and access to healthcare services during the COVID-19 pandemic. METHODS: We retrieved published evidence from late December 2019 through March 1, 2021. The target population was the population of the countries during the COVID-19 pandemic. The exposures were defined as belonging to racial/ethnic minority groups and/or low SES. The primary outcomes of interest include (1) death from COVID-19, (2) COVID-19 incidence/infection, (3) COVID-19 hospitalization, (4) ICU admission, (5) need for mechanical ventilation, (6) confirmed diagnosis, and (7) access to testing. We systematically synthesized the findings from different studies and provided a narrative explanation of the results. RESULTS: After removing the duplicate results and screening for relevant titles and abstracts, 77 studies were selected for full-text review. Finally, 52 studies were included in the review. The majority of the studies were from the United States (37 studies). Despite the significant incongruity among the studies, most of them showed that racial/ethnic minority groups had higher risks of COVID-19 infection and hospitalization, confirmed diagnosis, and death. Additionally, most of the studies cited factors such as low level of education, poverty, poor housing conditions, low household income, speaking in a language other than the national language in a country, and living in overcrowded households as risk factors of COVID-19 incidence/infection, death, and confirmed diagnosis. However, findings in terms of the association of lack of health insurance coverage and unemployment with the outcome measures as well as the association of requiring mechanical ventilation, ICU admission, and access to testing for COVID-19 with race/ethnicity were limited and inconsistent. CONCLUSION: It is evident that racial/ethnic minority groups and those from low SES are more vulnerable to COVID-19; therefore, public health policymakers, practitioners, and clinicians should be aware of these inequalities and strive to narrow the gap by focusing on vulnerable populations. This systematic review also revealed a major incongruity in the definition of the racial/ethnic minority groups and SES among the studies. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020190105.


Subject(s)
COVID-19 , Ethnicity , COVID-19 Testing , Health Status Disparities , Humans , Minority Groups , Pandemics , SARS-CoV-2 , Social Class , United States/epidemiology
4.
PLoS One ; 16(11): e0260371, 2021.
Article in English | MEDLINE | ID: covidwho-1528729

ABSTRACT

Non-Pharmaceutical Public Health Interventions (NPHIs) have been used by different countries to control the spread of the COVID-19. Despite available evidence regarding the effectiveness of NPHSs, there is still no consensus about how policymakers can trust these results. Studies on the effectiveness of NPHSs are single studies conducted in specific communities. Therefore, they cannot individually prove if these interventions have been effective in reducing the spread of the infection and its adverse health outcomes. In this systematic review, we aimed to examine the effects of NPHIs on the COVID-19 case growth rate, death growth rate, Intensive Care Unit (ICU) admission, and reproduction number in countries, where NPHIs have been implemented. We searched relevant electronic databases, including Medline (via PubMed), Scopus, CINAHL, Web of Science, etc. from late December 2019 to February 1, 2021. The key terms were primarily drawn from Medical Subject Heading (MeSh and Emtree), literature review, and opinions of experts. Peer-reviewed quasi-experimental studies were included in the review. The PROSPERO registration number is CRD42020186855. Interventions were NPHIs categorized as lockdown, stay-at-home orders, social distancing, and other interventions (mask-wearing, contact tracing, and school closure). We used PRISMA 2020 guidance for abstracting the data and used Cochrane Effective Practice and Organization of Practice (EPOC) Risk of Bias Tool for quality appraisal of the studies. Hartung-Knapp-Sidik-Jonkman random-effects model was performed. Main outcomes included COVID-19 case growth rate (percentage daily changes), COVID-19 mortality growth rate (percentage daily changes), COVID-19 ICU admission (percentage daily changes), and COVID-19 reproduction number changes. Our search strategies in major databases yielded 12,523 results, which decreased to 7,540 articles after eliminating duplicates. Finally, 35 articles qualified to be included in the systematic review among which 23 studies were included in the meta-analysis. Although studies were from both low-income and high-income countries, the majority of them were from the United States (13 studies) and China (five studies). Results of the meta-analysis showed that adoption of NPHIs has resulted in a 4.68% (95% CI, -6.94 to -2.78) decrease in daily case growth rates, 4.8% (95 CI, -8.34 to -1.40) decrease in daily death growth rates, 1.90 (95% CI, -2.23 to -1.58) decrease in the COVID-19 reproduction number, and 16.5% (95% CI, -19.68 to -13.32) decrease in COVID-19 daily ICU admission. A few studies showed that, early enforcement of lockdown, when the incidence rate is not high, contributed to a shorter duration of lockdown and a lower increase of the case growth rate in the post-lockdown era. The majority of NPHIs had positive effects on restraining the COVID-19 spread. With the problems that remain regarding universal access to vaccines and their effectiveness and considering the drastic impact of the nationwide lockdown and other harsh restrictions on the economy and people's life, such interventions should be mitigated by adopting other NPHIs such as mass mask-wearing, patient/suspected case isolation strategies, and contact tracing. Studies need to address the impact of NPHIs on the population's other health problems than COVID-19.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control/methods , Physical Distancing , Public Health , Quarantine/methods , SARS-CoV-2/physiology , COVID-19/transmission , COVID-19/virology , Humans
5.
PLoS One ; 15(9): e0239554, 2020.
Article in English | MEDLINE | ID: covidwho-810247

ABSTRACT

BACKGROUND: Without any pharmaceutical intervention and vaccination, the only way to combat Coronavirus Disease 2019 (COVID-19) is to slow down the spread of the disease by adopting non-pharmaceutical public health interventions (PHIs). Patient isolation, lockdown, quarantine, social distancing, changes in health care provision, and mass screening are the most common non-pharmaceutical PHIs to cope with the epidemic. However, there is neither systematic evidence on the effectiveness of non-pharmaceutical PHIs in controlling the COVID-19 nor on how these interventions work in different contexts. Therefore, in this study we will address two main objectives: 1) to assess the effectiveness of the non-pharmaceutical PHIs in controlling the spread of COVID-19 using a systematic review and meta-analyses; 2) to explore why, how, and for whom these interventions work using a realist review. MATERIALS AND METHODS: This review study has two main phases. In the first phase of this study, we will extract data from two main types of studies including quasi-experimental studies (such as quasi-randomized trials, controlled before-after studies (CBAs) and interrupted time series studies (ITSs)) and observational studies (such as cohort, case-control, and cross-sectional studies), written in the English language. We will explore effectiveness of the non-pharmaceutical PHIs targeted either suppression or mitigation strategies (or a combination of both) in controlling the COVID-19 epidemics in the community level. Effectiveness will be considered as the changes in mortality rate, incidence rate, basic reproduction number rate, morbidity rate, rates of hospitalization, rates of intensive care unit (ICU) hospitalization, and other health outcomes where possible. We will perform random-effects meta-analyses, if possible, using CMA software. In the second phase, we will conduct a realist review to find out how, why, for whom, and in what circumstances the non-pharmaceutical PHIs work. At the realist review, we will identify and explore Context-Mechanism-Outcome configurations to provide a robust explanation on the effectiveness of the interventions in different contexts using Pawson's 5-step realist review template including: "clarify scope; search for evidence; appraise primary studies and extract data; synthesize evidence and draw conclusions; and disseminate, implement and evaluate". Although the steps are presented in a linear manner, in practice, we will follow them in iterative stages to fill any potential overlap. DISCUSSION: The findings of this research will provide a crucial insight into how and in which context the non-pharmaceutical PHIs work in controlling the spread of COVID-19. Conducting a systematic review and meta-analysis in line with a realist review will allow us to draw a robust conclusion on the effects and the way in which the interventions work. Understanding the role of contextual factors in the effectiveness of non-pharmaceutical PHIs and the mechanism of this process could enable policymakers to implement appropriate policies and manage the COVID-19 epidemics more efficiently. SYSTEMATIC REVIEW REGISTRATION: CRD42020186855.


Subject(s)
Communicable Disease Control/methods , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , Basic Reproduction Number , Betacoronavirus , COVID-19 , Controlled Before-After Studies , Coronavirus Infections/mortality , Hospitalization/statistics & numerical data , Humans , Interrupted Time Series Analysis , Meta-Analysis as Topic , Non-Randomized Controlled Trials as Topic , Observational Studies as Topic , Pneumonia, Viral/mortality , Research Design , SARS-CoV-2 , Systematic Reviews as Topic
SELECTION OF CITATIONS
SEARCH DETAIL